Calculus I	Name:
Study Guide 23	Class:
Due Date:	Score:

No Work \Leftrightarrow No Points Use Pencil Only \Leftrightarrow Be Neat & Organized

1. (3 points) Evaluate: $\int_0^4 \sqrt{x} \, dx$

2. (4 points) Evaluate:
$$\int_4^9 \left(\frac{1}{\sqrt{x}} + x\right) dx$$

3. (4 points) Evaluate: $\int_0^{\pi/4} (\cos x + \sin x) dx$

4. (2 points) Evaluate: $\int_1^1 \tan x \, dx$

4. _____

3. _____

1. _____

2. _

5. (3 points) Evaluate
$$\int_{-1}^{1} (4x^3 - 2x) dx$$

5. _____

6. (3 points) State clearly the Mean–Value Theorem for integrals for the function f(x) on [a, b].

The average (mean) value of f(x) on the interval [a, b] is given by $\frac{1}{b-a} \int_a^b f(x) dx$ and is denoted by f_{ave} .

7. Consider the function $f(x) = \sqrt{x}$ and the interval [0, 4]. (a) (3 points) Find f_{ave} .

(a) _____

(b) (4 points) Find a number $\ c$ in the given interval such that $f(c)=f_{ave}$.

(b) _____

- 8. Compute the area of the region between the graph of f(x) and the x-axis on the given interval. Drawing Required.
 - (a) (4 points) $f(x) = x^4$; [-1, 1]

(b) (4 points)
$$f(x) = x^{-2}$$
; $[-2, -1]$

(c) (4 points)
$$f(x) = \sin x$$
; $[0, 2\pi/3]$

(a) _____

(b) _____

Total Points: 50

(d) (4 points)
$$f(x) = \cos x$$
; $[-\pi/2, \pi/2]$

(e) (4 points)
$$f(x) = \sqrt[3]{x}$$
; [1,8]

(f) (4 points) $f(x) = \sec^2 x$; $[0, \pi/4]$

(d) _____